导读:f(x)=-1/3x3+1/2x2+2ax 若f(x)在(2/3,+无穷)上存在单调递增区间,求a的取值范围. 斗气狂风 1年前他留下的回答 已收到2个回答 雨落凡间_精灵 网友...
f(x)=-1/3x3+1/2x2+2ax 若f(x)在(2/3,+无穷)上存在单调递增区间,求a的取值范围.
斗气狂风
1年前他留下的回答
已收到2个回答
雨落凡间_精灵
网友
该名网友总共回答了22个问题,此问答他的回答如下:采纳率:95.5%
答案为a>-1/9
对函数f(x)求导得:
f'(x)=-x^2+x+2a
求得f'(x)= -x^2+x+2a>0的区间即可得到函数f(x)的递增区间,
解f'(x)= -x^2+x+2a>0 得:
[1-√(1+8a)]/2
1年前他留下的回答
1
最爱费雯丽
网友
该名网友总共回答了7个问题,此问答他的回答如下:
,提哈思路啊,手机上不方便,对f(x)求导,f'(x)大于等于0在(2/3,+无穷)恒成立,在两边同时除以x
1年前他留下的回答
1
以上就是小编为大家介绍的f(x)=-1/3x3+1/2x2+2ax 若f(x)在(2/3,+无穷)上存在单调递增区间,求a的取值范围. 的全部内容,如果大家还对相关的内容感兴趣,请持续关注天堂壮学习网!
标签:
内容声明:网站所展示的内容均由第三方用户投稿提供,内容的真实性、准确性和合法性均由发布用户负责。诚智拓展网对此不承担任何相关连带责任。诚智拓展网遵循相关法律法规严格审核相关关内容,如您发现页面有任何违法或侵权信息,欢迎向网站举报并提供有效线索,我们将认真核查、及时处理。感谢您的参与和支持!