导读:已知函数f(x)=ax^2-2bx+a(a、b∈R)(1)若a从集合{0,1,2,3}中任取一个元素, 已知函数f(x)=ax^2-2bx+a(a、b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(X)=0恰有两个不相等实根的概率;(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=...
已知函数f(x)=ax^2-2bx+a(a、b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,
已知函数f(x)=ax^2-2bx+a(a、b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,
b从集合{0,1,2,3}中任取一个元素,求方程f(X)=0恰有两个不相等实根的概率;
(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率
8521
1年前他留下的回答
已收到1个回答
Hohe007
网友
该名网友总共回答了19个问题,此问答他的回答如下:采纳率:84.2%
(1)∵a取集合{0,1,2,3}中任一元素,b取集合{0,1,2,3}中任一元素 a,b取值的情况是:(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)(0,3)(1,3)(2,3)(3,3)其中第一个数表示a的取值,第二个表示b的取值,即基本事件总数为16 设方程f(x)=0恰有两个不相等的实根为事件A 当a≥0,b≥0时,方程f(x)=0恰有两个不相等实根的充要条件为b>a且a不等于零 当b>a时,a,b取值的情况有(1,2)(1,3)(2,3) 即A包含的基本事件数为3,∴方程f(x)=0恰有两个不相等实根的概率P(A)=3/16
(2)∵b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,则试验的全部结果构成区域{(a,b)|0≤a≤3,0≤b≤2}这是一个矩形区域,其面积为S1=2*3=6 设“方程f(x)=0没有实根”为事件B,则事件B所构成的区域为{(a,b)|0≤a≤3,0≤b≤2,a>b}其面积为S2=6-(1/2)*2*2=4 由几何概率的概率计算公式可得:方程f(x)=0没有实根的概率P(B)=S2/S1=4/6=2/3
1年前他留下的回答
9
以上就是小编为大家介绍的已知函数f(x)=ax^2-2bx+a(a、b∈R)(1)若a从集合{0,1,2,3}中任取一个元素, 的全部内容,如果大家还对相关的内容感兴趣,请持续关注天堂壮学习网!
标签:
内容声明:网站所展示的内容均由第三方用户投稿提供,内容的真实性、准确性和合法性均由发布用户负责。诚智拓展网对此不承担任何相关连带责任。诚智拓展网遵循相关法律法规严格审核相关关内容,如您发现页面有任何违法或侵权信息,欢迎向网站举报并提供有效线索,我们将认真核查、及时处理。感谢您的参与和支持!